L–eta–invariants and Their Approximation by Unitary Eta–invariants

نویسنده

  • STEFAN FRIEDL
چکیده

Cochran, Orr and Teichner introduced L–eta–invariants to detect highly non–trivial examples of non slice knots. Using a recent theorem by Lück and Schick we show that their metabelian L–eta–invariants can be viewed as the limit of finite dimensional unitary representations. We recall a ribbon obstruction theorem proved by the author using finite dimensional unitary eta–invariants. We show that if for a knot K this ribbon obstruction vanishes then the metabelian L –eta–invariant vanishes too. The converse has been shown by the author not to be true.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eta Invariants as Sliceness Obstructions and Their Relation to Casson-gordon Invariants

We give a useful classification of the metabelian unitary representations of π1(MK), where MK is the result of zero-surgery along a knot K ⊂ S . We show that certain eta invariants associated to metabelian representations π1(MK)→ U(k) vanish for slice knots and that even more eta invariants vanish for ribbon knots and doubly slice knots. We show that our vanishing results contain the Casson–Gor...

متن کامل

Link Concordance, Boundary Link Concordance and Eta-invariants

We study the eta-invariants of links and show that in many cases they form link concordance invariants, in particular that many eta-invariants vanish for slice links. This result contains and generalizes previous invariants by Smolinsky and Cha–Ko. We give a formula for the eta-invariant for boundary links. In several intersting cases this allows us to show that a given link is not slice. We sh...

متن کامل

K-Homology, Assembly and Rigidity Theorems for Relative Eta Invariants

Nigel Higson and John Roe Abstract: We connect the assembly map in C∗-algebra K-theory to rigidity properties for relative eta invariants that have been investigated by Mathai, Keswani, Weinberger and others. We give a new and conceptual proof of Keswani’s theorem that whenever the C∗-algebra assembly map is an isomorphism, the relative eta invariants associated to the signature operator are ho...

متن کامل

Stefan Friedl Research Statement

Recent Research: Slice knots. A knot K ⊂ S is called slice, if it bounds a smooth 2-disk in D. In higher odd dimensions Levine [Le69], [Le69b] found a computable algebraic method of determining whether a knot is slice or not. In 1975 Casson and Gordon [CG86] first found examples which show that the high dimensional results (which relied on the Whitney trick) can not be extended to the case of o...

متن کامل

Bordism, rho-invariants and the Baum–Connes conjecture

Let ! be a finitely generated discrete group. In this paper we establish vanishing results for rho-invariants associated to (i) the spin Dirac operator of a spin manifold with positive scalar curvature and fundamental group !; (ii) the signature operator of the disjoint union of a pair of homotopy equivalent oriented manifolds with fundamental group ! . The invariants we consider are more preci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003